67 research outputs found

    Geometric Duality for Convex Vector Optimization Problems

    Full text link
    Geometric duality theory for multiple objective linear programming problems turned out to be very useful for the development of efficient algorithms to generate or approximate the whole set of nondominated points in the outcome space. This article extends the geometric duality theory to convex vector optimization problems.Comment: 21 page

    Configuration mixing in 188^{188}Pb : band structure and electromagnetic properties

    Full text link
    In the present paper, we carry out a detailed analysis of the presence and mixing of various families of collective bands in 188^{188}Pb. Making use of the interacting boson model, we construct a particular intermediate basis that can be associated with the unperturbed bands used in more phenomenological studies. We use the E2 decay to construct a set of collective bands and discuss in detail the B(E2)-values. We also perform an analysis of these theoretical results (Q, B(E2)) to deduce an intrinsic quadrupole moment and the associated quadrupole deformation parameter, using an axially deformed rotor model.Comment: submitted to pr

    Configuration mixing in the neutron-deficient 186−196^{186-196}Pb isotopes

    Full text link
    In this article we report the results of detailed interacting boson model calculations with configuration mixing for the neutron-deficient Pb isotopes. Calculated energy levels and B(E2)B(E2) values for 188−196^{188-196}Pb are discussed and some care is suggested concerning the current classification on the basis of level systematics of the 41+4_1^+ and 61+6_1^+ states in 190−194^{190-194}Pb. Furthermore, quadrupole deformations are extracted for 186−196^{186-196}Pb and the mixing between the different families (0p-0h, 2p-2h, and 4p-4h) is discussed in detail. Finally, the experimental and the theoretical level systematics are compared.Comment: to be published in Phys. Rev.

    Markov Processes, Hurst Exponents, and Nonlinear Diffusion Equations with application to finance

    Full text link
    We show by explicit closed form calculations that a Hurst exponent H that is not 1/2 does not necessarily imply long time correlations like those found in fractional Brownian motion. We construct a large set of scaling solutions of Fokker-Planck partial differential equations where H is not 1/2. Thus Markov processes, which by construction have no long time correlations, can have H not equal to 1/2. If a Markov process scales with Hurst exponent H then it simply means that the process has nonstationary increments. For the scaling solutions, we show how to reduce the calculation of the probability density to a single integration once the diffusion coefficient D(x,t) is specified. As an example, we generate a class of student-t-like densities from the class of quadratic diffusion coefficients. Notably, the Tsallis density is one member of that large class. The Tsallis density is usually thought to result from a nonlinear diffusion equation, but instead we explicitly show that it follows from a Markov process generated by a linear Fokker-Planck equation, and therefore from a corresponding Langevin equation. Having a Tsallis density with H not equal to 1/2 therefore does not imply dynamics with correlated signals, e.g., like those of fractional Brownian motion. A short review of the requirements for fractional Brownian motion is given for clarity, and we explain why the usual simple argument that H unequal to 1/2 implies correlations fails for Markov processes with scaling solutions. Finally, we discuss the question of scaling of the full Green function g(x,t;x',t') of the Fokker-Planck pde.Comment: to appear in Physica

    Phase transitions in the sdgsdg interacting boson model

    Get PDF
    A geometric analysis of the sdgsdg interacting boson model is performed. A coherent-state is used in terms of three types of deformation: axial quadrupole (ÎČ2\beta_2), axial hexadecapole (ÎČ4\beta_4) and triaxial (Îł2\gamma_2). The phase-transitional structure is established for a schematic sdgsdg hamiltonian which is intermediate between four dynamical symmetries of U(15), namely the spherical U(5)⊗U(9){\rm U}(5)\otimes{\rm U}(9), the (prolate and oblate) deformed SU±(3){\rm SU}_\pm(3) and the Îł2\gamma_2-soft SO(15) limits. For realistic choices of the hamiltonian parameters the resulting phase diagram has properties close to what is obtained in the sdsd version of the model and, in particular, no transition towards a stable triaxial shape is found.Comment: 19 pages, 5 figures, submitted to J. Phys.

    Magnetic Dipole Sum Rules for Odd-Mass Nuclei

    Full text link
    Sum rules for the total- and scissors-mode M1 strength in odd-A nuclei are derived within the single-j interacting boson-fermion model. We discuss the physical content and geometric interpretation of these sum rules and apply them to ^{167}Er and ^{161}Dy. We find consistency with the former measurements but not with the latter.Comment: 13 pages, Revtex, 1 figure, Phys. Rev. Lett. in pres

    IBM-1 description of the fission products 108,110,112^{108,110,112}Ru

    Get PDF
    IBM-1} calculations for the fission products 108,110,112^{108,110,112}Ru have been carried out. The even-even isotopes of Ru can be described as transitional nuclei situated between the U(5) (spherical vibrator) and SO(6) (Îł\gamma-unstable rotor) symmetries of the Interacting Boson Model. At first, a Hamiltonian with only one- and two-body terms has been used. Excitation energies and BB(E2) ratios of gamma transitions have been calculated. A satisfactory agreement has been obtained, with the exception of the odd-even staggering in the quasi-Îł\gamma bands of 110,112^{110,112}Ru. The observed pattern is rather similar to the one for a rigid triaxial rotor. A calculation based on a Hamiltonian with three-body terms was able to remove this discrepancy. The relation between the IBM and the triaxial rotor model was also examined.Comment: 22 pages, 8 figure

    Quantum phase transitions in the interacting boson model

    Full text link
    This review is focused on various properties of quantum phase transitions (QPTs) in the Interacting Boson Model (IBM) of nuclear structure. The model in its infinite-size limit exhibits shape-phase transitions between spherical, deformed prolate, and deformed oblate forms of the ground state. Finite-size precursors of such behavior are verified by robust variations of nuclear properties (nuclear masses, excitation energies, transition probabilities for low lying levels) across the chart of nuclides. Simultaneously, the model serves as a theoretical laboratory for studying diverse general features of QPTs in interacting many-body systems, which differ in many respects from lattice models of solid-state physics. We outline the most important fields of the present interest: (a) The coexistence of first- and second-order phase transitions supports studies related to the microscopic origin of the QPT phenomena. (b) The competing quantum phases are characterized by specific dynamical symmetries and novel symmetry related approaches are developed to describe also the transitional dynamical domains. (c) In some parameter regions, the QPT-like behavior can be ascribed also to individual excited states, which is linked to the thermodynamic and classical descriptions of the system. (d) The model and its phase structure can be extended in many directions: by separating proton and neutron excitations, considering odd-fermion degrees of freedom or different particle-hole configurations, by including other types of bosons, higher order interactions, and by imposing external rotation. All these aspects of IBM phase transitions are relevant in the interpretation of experimental data and important for a fundamental understanding of the QPT phenomenon.Comment: a review article, 71 pages, 18 figure
    • 

    corecore